Bucket List

The lucky young have their whole lives ahead of them. They can dream of adventures and plan for them in the future. Great times. However, as we age and we realize that there are only a limited number of days before we are too old to travel then planning becomes serious. Often we create a Bucket List; a list of things we want to do before we die. Many, if not all, items on the list consist of travel. To be a tourist. That’s lucky.

Tourism has become quite an industry. One source has it generating $7.6trillion in 2014. Close to 10% of global GDP. Another sources sets international tourist arrivals at 1.4 billion in 2018; that’s about 20% of the global population. Tourism generates 319 million jobs world wide; that’s about 10% of the estimated global employment. All told, tourism is expansive and growing.

Now let’s appreciate what tourism is all about. Tourism is leisure. Tourism is neither a necessity nor a right. We don’t need to be a tourist to survive. Tourism is a luxury. And after all, a Bucket List is all about ‘wants’ rather than ‘needs’. Now what does this ‘want’ cost us in energy? Let’s draw a direct comparison between energy and money. Therefor, if tourism uses 10% of GDP then we claim that it uses 10% of global annual energy usage. This amounts to 5.67e19 Joules which is almost equal to the world’s total electrical energy consumption. Think about it. We are effectively allocating all of world’s electrical production to tourism.

If the supply of clean, useful energy was limitless then using a good portion of it for leisure doesn’t represent a problem. And today, with little concern for energy future’s there seems to be little concern about how we allocate its usage. But what happens when the supply of energy diminishes? How should we discriminate between needs and wants? Are we ready to remove items from our Bucket List so that future generations can prosper?




Let’s Talk

Complex communication is one of humanity’s fundamental capabilities. With it, we organized and vanquished other species. With it, we improved our society. By talking we convey emotional feelings as adroitly as the fundamentals of nuclear physics. All this is achieved while expanding very little energy. Making noise for communication is something people readily and effectively accomplish.

At one time, we were limited in range by the volume of our voice, the strength of our vocal chords. Then along came telecommunications. Now we effortlessly talk with other people almost anywhere on Earth. And well above our planet too. Mechanical devices aid us in this. Often it’s the mobile telephone together with all its infrastructure like cell towers and fibre optic cables. With these and very little energy, our voices get encoded into digital data which gets transported to the listener and decoded back into words. Now there is no real limit to the range of our voices.

Mechanical devices like the mobile telephone, or cellphone, appeared in about 1973. And they flourished. Current estimates are that active mobile telephones now outnumber people. And these portable phones need energy. This comes from their internal battery. Assuming each phone uses a lithium ion battery which can store 0.8MJ per kg and each battery is 2 grams then over one year all the cell phones use +2.2E15 Joules to operate. That’s a large number. Additional energy is needed to support and operate the infrastructure. Hence, like all assistive mechanical devices, these aid but at an energy cost. A cost that appeared less than a lifetime ago.

With unlimited energy cellphones are an obvious boon. Will we still want or need to increase the range of our voices when energy supplies falter? In other words is this mechanical aid a base need of humanity? Would our society continue when we could only communicate with the people that we could see around us? Time will tell.