Bogs

Humans utilize natural resources in myriads of beneficial ways. For example, we see a swamp or bog and, instead of avoiding it, we learn to use its contents for agriculture, pharmaceuticals and even energy production. In particular, we’ve learned to use the peat that’s typically found in bogs.

Peat bogs exist throughout the world, though principally in the north of the northern hemisphere. Peat accumulates but at the very slow rate of about 1 mm depth per year; and only when conditions are perfect. If we leave the peat undisturbed, then it would transition to coal, but over a time of perhaps millions of years. We aren’t that patient. Today, we directly or indirectly consume peat at a much faster rate than its accumulation.

For simplicity, let’s say peat is a fossil fuel. That is, it’s non-renewable and to access its energy, we release its carbon into the atmosphere. We’ve discovered that the world’s peat reserves hold more carbon than all the land vegetation. If we burn all the peat, all its 24×1021Joules of stored energy, we’d also release vast quantities of carbon as greenhouse gases.

Instead, we have promulgated a Wise Use of Mires and Peatlands “to meet the needs of the present without compromising the ability of future generations to meet their own needs”. The aim is to sustain the benefits of peat. Any chance we could do the same for all fossil fuels?
Moss

A Hot Start to the Year

Forest fires are a natural process. Trees burn. The ensuing clearing allows new growth, which rebuilds into a vibrant ecosystem.

This year, however, things are out of whack. In Canada, already over 8 million hectares of forest have burnt. In a typical year, less than 10 million hectares of forest fires burns globally. This year’s global total will certainly be much, much greater given Canada’s current area lost as the fire season has just started in the northern hemisphere.

How can we scale 8 million hectares? The easiest is to use the element carbon as typically done for climate change calculations. Using standard values for Above Ground Biomass, the loss of the trees amounts to about 8.7×10^14 grams carbon. If it was totally burnt, there would be a subsequent release of about 3.5×10^19 Joules of energy. Recall that trees are autotrophs. Thus, their loss means that all creatures above them on the trophic pyramid also perish; the herbivores and the carnivores. This scales the immediate loss to forest fire.

There is also the loss of future photosynthesis. The burnt trees no longer remove carbon dioxide or add oxygen. Using the Net Primary Productivity for a temperate forest, the loss of the trees equates to about 1.2×10^14 grams of carbon dioxide not being removed. Trees will regrow, but many decades will pass before the burnt area absorbs the same amount of carbon dioxide.

To compensate for this loss of carbon dioxide removal, we could drive less. That is, we could remove 27 million vehicles from the roads. However, only time and a reasonable climate will replace all the lost living beings; the trees, the foxes, the owls.

We may think it better to not have forest fires. But remember, they are a natural process and they should continue to occur. While we can’t stop forest fires, we can reduce our carbon dioxide emissions and try to return the global temperature to that of pre-industrial times. Or, we can simply watch things burn. Which do you think is best for the future?
Blood red moon arising