Tragedy

Winter in the northern hemisphere brings cold. Fortunately, controlled climate in housing enables people to live comfortably. Heat comes from the release of energy, often from burning natural gas or wood. Often, the house’s occupant uses a simple control device, a thermostat, to control the temperature inside the house to whatever they believe is most comfortable.

As we know, burning non-renewable fossil fuels comes with problems. Two of them are: the emission of pollutants; and the eventual need to replace the energy source. Obviously, setting a house’s temperature higher will burn more fuel, which results in greater amounts of pollution and a sooner need to replace the energy source. Thus, from a sustainability perspective, it’s better to keep one’s house temperature as low as possible.

But, you have no way of knowing the temperature set inside a house. Nor does anyone know what temperature you have set inside your own house. The only consequence of setting a higher temperature is the increased financial cost to purchase the fuel. You can set your house temperature as high as you want so that you are as comfortable as you want and no one will know.

This conflict between personal betterment or social betterment is known as the ‘tragedy of the commons’. The tragedy is our inherent, continual desire for personal betterment to the detriment of society. Will this tragedy be the downfall of our species? Or will we act socially even when no one sees?
snow

Bogs

Humans utilize natural resources in myriads of beneficial ways. For example, we see a swamp or bog and, instead of avoiding it, we learn to use its contents for agriculture, pharmaceuticals and even energy production. In particular, we’ve learned to use the peat that’s typically found in bogs.

Peat bogs exist throughout the world, though principally in the north of the northern hemisphere. Peat accumulates but at the very slow rate of about 1 mm depth per year; and only when conditions are perfect. If we leave the peat undisturbed, then it would transition to coal, but over a time of perhaps millions of years. We aren’t that patient. Today, we directly or indirectly consume peat at a much faster rate than its accumulation.

For simplicity, let’s say peat is a fossil fuel. That is, it’s non-renewable and to access its energy, we release its carbon into the atmosphere. We’ve discovered that the world’s peat reserves hold more carbon than all the land vegetation. If we burn all the peat, all its 24×1021Joules of stored energy, we’d also release vast quantities of carbon as greenhouse gases.

Instead, we have promulgated a Wise Use of Mires and Peatlands “to meet the needs of the present without compromising the ability of future generations to meet their own needs”. The aim is to sustain the benefits of peat. Any chance we could do the same for all fossil fuels?
Moss

The Albatross

Literature embellishes the albatross with near-spiritual endowments. These magnificent wanderers fly near-effortlessly. For example, they completely circumnavigate Earth’s southern polar region without once touching land. Obviously, they must be energy efficient. Using some simple assumptions, we calculate that their lifetime energy consumption is about 3.3e+10Joules per bird. This is a great example of how energy flows through the ecosystem and sustainably supports life on Earth.

We can calculate lifetime energy consumption for people as well. Using assumptions that are similar to those for the albatross, we calculate that a typical, busy human would consume 40e+10Joules in a lifetime. But this is solely our biological energy consumption. Humans have learned to access and utilize energy stored in other forms. Adding these, the total consumption of energy for the lifetime of a person in Switzerland (a randomly chosen reference) becomes 1000e+10 Joules. Or, over a lifetime, a person consumes over 300 times the amount of energy than an albatross.

Let’s take a ‘bigger picture’ view of these calculations. The albatross has found an ecological niche that may enable it to survive for a very long time into the future if its sources of energy, the squid and fish, remain. Humans also have taken an ecological niche. But we are expanding into just about every other niche. “How so?” you ask. Well, we’ve subjected a half of Earth’s arable lands to agriculture. We’ve discovered and utilized many of Earth’s (finite) stores of energy. And our population continues to expand. The number of albatross decreases. Is this sustainable for a long time into the future?
Wangering albatross
By JJ Harrison (https://www.jjharrison.com.au/) – Own work, CC BY-SA 3.0

A Plan

By now, you realize that non-renewable energy sources will be fully consumed. Some suggest that it might occur within 50 years; some sooner; some later. But it will occur and it will occur relatively soon. And yes, their burning will add to the existing noxious pollutants. After, we will have no more fossil fuels and a dirty atmosphere.

What then? We will gather energy from renewable sources such as wind and solar. But, these sources currently amount to less than 20% of global energy consumption. And there’s little to no chance that they can provide all of our desired energy. We suggest that there will never again be a source of energy as utile and promiscuous as today’s fossil fuels.

Let’s look to the future and consider the usage of the finite amount of fossil fuels remaining. Do we continue apportioning energy consumption to maximize the human population? Do we drastically limit the amount used to avoid pollutants and re-learn to live simply? Or do we flame-out and use the remaining stores in one last hurrah? We could settle humans on the Earth’s moon. We could battle each other into extermination. We could build fusion reactors. What is the plan for civilization?
Dead Man Finger Fungi

A Home for Everyone

Sweet dreams are made with homes. Imagine your own space where you can live as you want, listen to your own music and make your own meals. All this without having others to provide a running commentary on your choices and actions. Making things our own turns houses into homes.

Understandably, houses come at a cost. Houses also come in a variety of sizes. Using reasonable metrics for these, and aligning them to typically energy rates, we can estimate an equivalent energy cost for building a house. For a smaller house with a less expensive energy cost, a new build is the equivalent of about 8.6×10^12 Joules. If we assume that all 8 billion people live in groups of 4, then we would need 3.9×10^22Joules to build a house for each group’s dreams.

Is this a lot of energy? The energy cost to build a house for each group is over 100 times humanity’s current annual primary energy consumption. If we set the annual house maintenance cost to the typical 1%, then the energy to maintain these homes becomes equivalent to our annual energy consumption. Further, we would need to allocate even more energy for rebuilding houses as they typically last for only 100 years. And, our population continues to grow. How will the Earth satisfy everyone’s dream for a home?
Bird song